Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383387

RESUMO

BACKGROUND: Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS: We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS: IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION: PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Camundongos , Animais , Detecção Precoce de Câncer , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/genética , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/genética , Camundongos Transgênicos , Endoscopia , Poli(ADP-Ribose) Polimerase-1/genética
2.
J Nucl Med ; 64(5): 803-808, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604181

RESUMO

Esophageal adenocarcinoma causes 6% of cancer-related deaths worldwide. Near-infrared fluorescence molecular endoscopy (NIR-FME) uses a tracer that targets overexpressed proteins. In this study, we aimed to investigate the feasibility of an epidermal growth factor receptor (EGFR)-targeted tracer, cetuximab-800CW, to improve detection of early-stage esophageal adenocarcinoma. Methods: We validated EGFR expression in 73 esophageal tissue sections. Subsequently, we topically administered cetuximab-800CW and performed high-definition white-light endoscopy (HD-WLE), narrow-band imaging, and NIR-FME in 15 patients with Barrett esophagus (BE). Intrinsic fluorescence values were quantified using multidiameter single-fiber reflectance and single-fiber fluorescence spectroscopy. Back-table imaging, histopathologic examination, and EGFR immunohistochemistry on biopsy samples collected during NIR-FME procedures were performed and compared with in vivo imaging results. Results: Immunohistochemical preanalysis showed high EGFR expression in 67% of dysplastic tissue sections. NIR-FME visualized all 12 HD-WLE-visible lesions and 5 HD-WLE-invisible dysplastic lesions, with increased fluorescence signal in visible dysplastic BE lesions compared with nondysplastic BE as shown by multidiameter single-fiber reflectance/single-fiber fluorescence, reflecting a target-to-background ratio of 1.5. Invisible dysplastic lesions also showed increased fluorescence, with a target-to-background ratio of 1.67. Immunohistochemistry analysis showed EGFR overexpression in 16 of 17 (94%) dysplastic BE lesions, which all showed fluorescence signal. Conclusion: This study has shown that NIR-FME using cetuximab-800CW can improve detection of dysplastic lesions missed by HD-WLE and narrow-band imaging.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Cetuximab , Fluorescência , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/patologia , Endoscopia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Receptores ErbB/metabolismo
3.
Cancers (Basel) ; 14(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35626066

RESUMO

Barrett's esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE) has a higher progression risk to EAC compared to non-dysplastic BE (NDBE). However, the miss rates for the endoscopic detection of DBE remain high. Fluorescence molecular endoscopy (FME) can detect DBE and mucosal EAC by highlighting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. Publicly available RNA expression profiles of EAC and NDBE were corrected by functional genomic mRNA (FGmRNA) profiling. Following a class comparison between FGmRNA profiles of EAC and NDBE, predicted, significantly upregulated genes in EAC were prioritized by a literature search. Protein expression of prioritized genes was validated by immunohistochemistry (IHC) on DBE and NDBE tissues. Near-infrared fluorescent tracers targeting the proteins were developed and evaluated ex vivo on fresh human specimens. In total, 1976 overexpressed genes were identified in EAC (n = 64) compared to NDBE (n = 66) at RNA level. Prioritization and IHC validation revealed SPARC, SULF1, PKCι, and DDR1 (all p < 0.0001) as the most attractive imaging protein targets for DBE detection. Newly developed tracers SULF1-800CW and SPARC-800CW both showed higher fluorescence intensity in DBE tissue compared to paired non-dysplastic tissue. This study identified SPARC, SULF1, PKCι, and DDR1 as promising targets for FME to differentiate DBE from NDBE tissue, for which SULF1-800CW and SPARC-800CW were successfully ex vivo evaluated. Clinical studies should further validate these findings.

4.
EJNMMI Res ; 12(1): 2, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006394

RESUMO

BACKGROUND: Near-infrared (NIR) fluorescence imaging has been emerging as a promising strategy to overcome the high number of early esophageal adenocarcinomas missed by white light endoscopy and random biopsy collection. We performed a preclinical assessment of fluorescence imaging and endoscopy using a novel CXCR4-targeted fluorescent peptide ligand in the L2-IL1B mouse model of Barrett's esophagus. METHODS: Six L2-IL1B mice with advanced stage of disease (12-16 months old) were injected with the CXCR4-targeted, Sulfo-Cy5-labeled peptide (MK007), and ex vivo wide-field imaging of the whole stomach was performed 4 h after injection. Before ex vivo imaging, fluorescence endoscopy was performed in three L2-IL1B mice (12-14 months old)  by a novel imaging system with two L2-IL1B mice used as negative controls. RESULTS: Ex vivo imaging and endoscopy in L2-IL1B mice showed that the CXCR4-targeted MK007 accumulated mostly in the dysplastic lesions with a mean target-to-background ratio > 2. The detection of the Sulfo-Cy5 signal in dysplastic lesions and its co-localization with CXCR4 stained cells  by confocal microscopy further confirmed the imaging results. CONCLUSIONS: This preliminary preclinical study shows that CXCR4-targeted fluorescence endoscopy using MK007 can detect dysplastic lesions in a mouse model of Barrett's esophagus. Further investigations are needed to assess its use in the clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...